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Abstract

Dynamic mode decomposition (DMD) is a modal decomposition
technique that describes high-dimensional dynamic data using coupled
spatial-temporal modes. It combines the main features of perform-
ing principal components analysis (PCA) in space and power spectral
analysis in time. The method is an equation-free in the sense that it
does not require knowledge of the underlying governing equations and
it is entirely data-driven. The purpose of this paper is to introduce
a new algorithm for computing the dynamic mode decomposition in
the case of full rank data. The new approach is more economic from
a computational point of view, which is an advantage when working
with large data.
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1 Introduction

Dynamic mode decomposition algorithm (DMD method) has been estab-
lished as a leading technique for identifying spatiotemporal coherent struc-
tures from high-dimensional data. It can be considered to be a numerical
approximation to Koopman spectral analysis, and in this sense it is applica-
ble to nonlinear dynamical systems (see [2, 3]). Last years the popularity of
DMD method has grown and it has been applied for a variety of dynamical
systems in many different fields such as video processing [12], epidemiology
[13], neuroscience [15], financial trading [16, 17, 18], robotics [14], cavity
flows [4, 6] and various jets [2, 5]. For a review of the DMD literature, we
refer the reader to [8, 9, 19].
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DMD Method

We briefly consider the DMD algorithm, which was introduced for the first
time by Schmid [1] in the fluid mechanics community.

The standard definition of DMD consider a sequential set of data Z =
{z0, . . . , zm}, where each zk ∈ Rn. The data zi could be from measurements,
experiments or simulations collected at time ti from a given nonlinear sys-
tem, assume that the data are equispaced in time, with a time step 4t and
the collection time starts from t0 to tm.

The method uses arrangement of the data set into two large data matri-
ces:

X = [z0, . . . , zm−1] and Y = [z1, . . . , zm]. (1)

The main assumption of the method is that there exists a linear (un-
known) operator A relating zk to the subsequent zk+1:

zk+1 = Azk. (2)

Expression (2) is equivalent to

Y = AX. (3)
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Then the dynamic mode decomposition of the data matrix Z is given by
the eigendecomposition of A. The DMD modes and eigenvalues are intended
to approximate the eigenvectors and eigenvalues of A.

One possible approach for approximating the operator A is to use the
singular value decomposition (SVD) of the data matrix X = UΣV ∗ and the
expression

A ≈ Y X† = Y V Σ−1U∗ , (4)

where X† is the pseudoinverse of X.
It should be noted that if n is large, i.e. n � m, calculating the eigen-

decomposition of the n × n matrix A can be prohibitively expensive.
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The following algorithm allows to calculate DMD modes and eigenvalues
without directly calculating A.

Algorithm 1: Exact DMD Algorithm [8]

1. Compute the SVD of X = UΣV ∗ and substitute into (4) :

A = Y V Σ−1U∗.

2. Define Ã = U∗AU = U∗Y V Σ−1.

3. Compute the eigendecomposition of Ã

ÃW = WΛ,

where W is the eigenvector matrix and Λ is the diagonal matrix

of eigenvalues Λ = diag{λi}. Each λi is a DMD eigenvalue.

4. Compute the DMD modes

Φ = Y V Σ−1W.

Each column φi of Φ is a DMD mode corresponding to eigenvalue λi.
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Finally, we can reconstruct the approximate dynamics of data set Z as

zDMD(k) = ΦΛkb , (5)

where b = Φ†z0, and Φ† is the pseudo-inverse of Φ.
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An alternative DMD algorithm

In our recent publication [20] we introduced a new algorithm for computing
DMD decomposition of A. The new algorithm follows the same steps as in
Algorithm 1. The distinctive feature is the following. We use eigendecom-
position of the following matrix

Â = Σ−1U∗Y V , (6)

instead eigendecomposition of matrix Ã, in Step 2 of Algorithm 1.
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The two matrices Ã and Â are similar, with transformation matrix Σ,
therefore have the same eigenvalues. For the DMD modes we use the formula

Φ = Y V Ŵ , (7)

where Ŵ is the eigenvector matrix of Â, i.e.

ÂŴ = ŴΛ . (8)

It is seen that although the matrices Ã and Â have a similar representa-
tion, the expression (7) for calculating the DMD modes is simpler than
the corresponding formula in Algorithm 1, Step 4. Therefore the algorithm
introduced in [20] is more efficient in terms of computational cost.
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2 A new DMD algorithm for full rank datasets

As mentioned in the previous section, the DMD method involves approx-
imating the eigendecomposition of best fit linear operator A, which refers
to

Y = AX .

In fact, the algorithms of the DMD method allow the calculation of DMD
modes and eigenvalues without direct calculation of A.

For this purpose a reduced-order approximation of the matrix A is used,
such as

Ã = U∗AU = U∗Y V Σ−1 (9)

defined in Algorithm 1, or

Â = Σ−1U∗AU, (10)

defined by (6).
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In case the matrix X has full rank, i.e. rankX = m, then both Ã and
Â will be m × m matrices. Further, we will assume that matrix X is a full
rank matrix.

Our goal is to introduce a more computationally efficient algorithm for
calculating DMD modes and eigenvalues in this particular case.

Let us consider the following matrix

Ā = V ÂV ∗ , (11)

where V is the m × m unitary matrix from the SVD of X = UΣV ∗. Ob-
viously, matrices Â and Ā are unitarily similar, whith V ∗ the similarity
transformation matrix.
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From (6) and (11), we get

Ā = V Σ−1U∗Y , (12)

which yields
Ā = X†Y , (13)

where X† is the Moore-Penrose pseudoinverse of X.

11



Denoting the eigen-decomposition of Ā by

ĀW̄ = W̄Λ , (14)

where columns of W̄ are eigenvectors and Λ is a diagonal matrix containing
the corresponding eigenvalues.

Relations (10), (11) and (14) yield

A(XW̄ ) = (XW̄ )Λ, (15)

which means that
Φ = XW̄ (16)

is the matrix of DMD modes.
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Theorem 1 Let (λ, w), with λ 6= 0, be an eigenpair of Ā defined by (13).
Then the corresponding eigenpair of A is (λ, ϕ), where

ϕ = Y w.
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Next, we resume the results from above in a form of an algorithm.

Algorithm 2: DMD Algorithm for full rank dataset

1. Define Ā = X†Y , where X† is the pseudoinverse of X .

2. Compute the eigendecomposition of Ā

ĀW̄ = W̄Λ ,

where W̄ is the eigenvector matrix and Λ is the diagonal matrix

of eigenvalues Λ = diag{λi}. Each λi is a DMD eigenvalue.

3. Compute the DMD modes

Φ = Y W̄ .

Each column φi of Φ is a DMD mode corresponding to eigenvalue λi.
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3 Application of the new algorithm

Originally DMD theory focuses on full-rank, sequential time series, where
typically n � m. Since the method was introduced it found applications
in many different fields. This presume, in practice, that in some cases the
inverse relationship is also valid, namely the number of measurements m

taken in time may be greater than dimension of spatial measurements per
time n, i.e. m < n.
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The following options are available.

• When the high-dimensional dynamics of the data has some underly-
ing low-dimensional structure, it may be possible to capture the key
dynamics of the data with relatively few DMD modes. In this case,
the rank of the data-set is equal to the number of DMD modes.

• In some data sets, there are linear dependencies among the measure-
ments (snapshots), i.e. the rank of data-set is too low and the DMD
fails to fully capture the dynamics of the system. The solution of
this rank mismatch is by rearranging the data set in modified (aug-
mented) data matrices inspired by the Hankel matrix constructed in
the eigenvalue realization algorithm (ERA), see [8].
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Illustrative Examples

The new algorithm introduced in Section 2 has the advantage of being more
cost-effective than standard DMD algorithms when used on a full-range data
set. With the following examples, we will illustrate algorithm introduced in
Section 2.

Example 1. Standing waves
It is known that the standard DMD algorithm is not able to represent a

standing wave in the data [8]. For example, if only measurements of a single
sine or cosine wave are collected, DMD fails to capture periodic oscillations
in the data.
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To demonstrate this we perform DMD method on a single measurement

x(t) = cos(t).

In this case, the X matrix only contains a single row

X =
[

x1 x2 . . . xn−1

]

and the DMD algorithm only returns a single eigenvalue, which is unable
to capture the oscillation in the data, see Figure 1. In fact, it is necessary
to have two complex conjugate eigenvalues corresponding to the sine and
cosine pair in order for DMD to capture standing wave.
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To solve this issue we construct augmented data matrices (shift-stacked
data matrices):

Xaug =

[

x1 x2 . . . xn−2

x2 x3 . . . xn−1

]

and Yaug =

[

x2 x3 . . . xn−1

x3 x4 . . . xn

]

. (17)

Since the Xaug matrix contains two rows that are linearly independent, i.e.
it is a full-rank matrix, then it has two (conjugate pair complex) DMD
eigenvalues. We performed both mentioned algorithms to represent x(t),
see Figure 1.
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Figure 1: Example of DMD, Augmented exact DMD and Augmented full-
rank DMD on a standing wave example x(t) = cos(t).

We can say that new algorithm (Algorithm 2 ) produces the same result
as the exact DMD procedure (Algorithm 1 ).
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Example 2. Example case from finance
We can demonstrate the rank deficiency problem with an example from

finance. We can use DMD method to discover the evolutionary patterns in
commodities market. In particular, if we consider the evolution in the price
of only one type of commodity, we will get the rank related issue. In fact,
this problem is quite similar to the standing wave problem.

21



Let us consider price evolution of the Brent Crude Oil for the period
01.02.2022 – 28.02.2022, containing 21 trading days, see Fig 2. Similarly to
Example 1, the data matrix X contains a single row

X =
[

x1 x2 . . . x21

]

,

where each xi is the closing price on the respective day. In order to overcome
the rank mismatch issue we construct augmented data matrices

Xaug =













x1 x2 . . . . . .

x2 x3 . . . . . .
...

...
. . .

...
xs xs+1 . . . x20













; Yaug =













x2 x3 . . . . . .

x3 x4 . . . . . .
...

...
. . .

...
xs+1 xs+2 . . . x21













, (18)

where we can choose s such that 11 ≤ s ≤ 19, which ensures that the
matrices Xaug and Yaug will be such that the number of rows will be greater
than the number of columns. For each s matrix Xaug is of full rank.
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Figure 2: Brent Crude Oil price for the period 1.2.2022 - 28.2.2022.

We performed the DMD method by using Algorithm 2 on augmented
data matrices Xaug and Yaug for each s. The results show that the best
approximation of the real data is obtained at the maximum rank of Xaug,
which is rank(Xaug) = 10 obtained for s = 11. Figure 2 shows the two
approximations for rank(Xaug) = 2 and rank(Xaug) = 10, respectively.
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4 Conclusion

The purpose of this study was to present a new approach for computing
approximate DMD modes and eigenvalues. As a result, we have introduced a
new algorithm, alternative procedure for executing the DMD decomposition
in the case of full rank data set. We demonstrate the performance of the
presented algorithms with numerical examples. From the obtained results
we can conclude that the introduced approach gives identical results with
those of the exact DMD method.
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