On Some Parallel Implementations of Chaotic maps

* Microprocessors based on single processing were the industry
standard for very long period of time. But unfortunately they have a
hindrance because of heat dissipation and energy consumption issues.
These problems restrict enhancement of CPU clocks which means
slowing down the number of tasks that could be performed within each
clock period. The solution to this problem is to change the architecture

In order to use multiple processing units known as cores.

06/23/21

In recent years a great deal of concerns have been raised for the security
of the information transmitted or stored open channels. This problem can
be solved by using an effective method to encrypt information so that only
the authorized users with specific key could decrypt the information .

= The chaotic systems have excellent confusion and diffusion properites.
And also are sensitive to the initial conditions and control parameters.

* Some of the cryptographic systems are based on single core CPU'’s

+ This type of system has major flaws the serial algorithms cannot take
advantage in processing large scale files and It's also important for the
algorithm to decrypt and encrypt data as fast as possible.

06/23/21

The Approach

Two approaches have become predominant in parallel programming
models:Open Multiprocessing

1. (OpenMP) for the shared memory and Message
2. Passing Interface (MPI) for the distributed memory.

OpenMP provides applicaton-oriented synhronization primitives which makes
it easy for writing parallel programs.

06/23/21

Chaotic cryptosystem

The chaotic cryptosystem use shared memory model which
distribute that control threads in partitions and distribute the data.
The algorithm has main thread for initialization of specific
parameters of the multi core system and a logistic map before
encrypting the data. This parallel process is made possible using
the C programming language and the library Open MP. Also the
main thread is responsible for the input and output of the
encryption/decryption.

06/23/21

Formula

Xpyl = A XXy, X(]_xn).

06/23/21

06/23/21

Formula explanation

X(n) -has a range in the interval of (0,1)
A-is the growth parameter which has a range in the interval(0,4)
[f A has a value of 3.569946 this offsets a chaotic behavior .
Because after A>3.569946 the function becomes erratic and chaotic.
An interesting thing to note is that it will reach every possible point
for every pair of elements between (0,1)

06/23/21

Logistic map diagram

Different types of Encryption

The diagram bellow shows that they are encrypted in order.

But for the diagram on the left. Each thread is assigned to specific block
staring for example with thread 1 processing block one until we have more
blocks that threads in which case we start over from thread one.

06/23/21

= minmi i m e mm e B RATSA-MEMOEY - - - = m e m s s
—pe :

Block 1 Block 2 Block n

06/23/21

Cryptosystem

The diagram below shows that if we take plain text and it goes through
encryption it will be ciphered. And the only way It can be deciphered is using
the logistic map program for decryption and getting the keys.

06/23/21

11

Plaintext

£

06/23/21

*.Encryption.’

-
R |

Ciphertext

*, Decryption.

Plamtext

12

Parallel Algorithm code

#pragma omp parallel private(OpenMP _ MyJD,
block i)

{

OpenMP _ MyJD = omp _geUhread numO;
OpenMP _NumThread = omp_get _num rocsQO,;
for (block_i OpenMP _ MyID;

block i<N umBlock;

block 1= block 1+ OpenMP _NumThread)
EncryptData(Key i, block j,OpenMP _ MyJD);
}

}

06/23/21

13

Encryptic transformation

This diagram shows how the logistic map creates the keys.User's key is

converted into the control parameterOf the initial value X(o) in the logistic
map

1. The Logistic map 1 generates the keys which are transformed into the
control parameter and the initial value of X(0) in the logistic map .

06/23/21

14

The total number of the keys generated by the logistic map 1 is equal to the
total number of the blocks. The threads encrypt the blocks by using the logistic
map 2and Key i(i=1,2, ..., n). Every thread corresponds to the real core in

the multicore processor.

06/23/21 15

Experimental analysis

It's very important not to downgrade system performance and
consequently encryption security that why It is important to use data
type double to get a precise output of the chaotic map.Fig. 6 shows the
difference of the initial value X(o)between the case of X(0) and the
case of X(0) + 10-6 for a =3.71 and a = 3.93. Let Nbe the number of

iteration.

06/23/21 16

The horizontal axis represents the number of iterations(N=50) the vertical the
differences between two values.

From Fig. 7 we can see that the difference between
the two values of the logistic map has changed
nonunifonnity when setting larger value of the control
parameter a. In general, we can easily obtain the
difference sequences by using the logistic map.

06/23/21

17

oY, e, o] du.':.l.t:u_l
- - : !

1.
i

1T
-

L L-L

i
| v g o e

(a)

Diagrams

s, T, T |

EEE

(b)

Fig. 6. N=50; fa)a=371; (b)a= 393

06/23/21

gt
;I-j -:-:|..I E':i:
ELRER
| ll ! |'_5 i
MM AL

T |

e | e b,
T

LI

o s e
T s o Fards sy
Tl

(a)

Fig. 7. N

2000: (a)a=3.71, (b)a=3.93.

18

Tha difersnca of fo valuas

10

Gl 4

=8

BT S

CUH

Gu o

G2 o

G 4

a=3.T1, x=0.1, «1 =0.100001

The diffsrsnce of two values

The number of Earation

(a)

1 a
#=3.83, x'=0.7, ' =0.700001|

1
08 -

0L =
-
B5=
04 =
-
=k B
-
0z-

1 !

Fig. 7. N=2000: (a) a=3.71; (b) a = 3.93.

19

lterational Relation

The keys sensitivity corresponds to the number of iteration. The logistic map has
the sensitivity to

hinges in the control parameters a. Small changes
of keys produce large variations by iterating the logistic
map. Therefore, cipher-breaking becomes difficult by

increasing the number of iteration. However this becomes a problem if the
iterations are small and the iterations become predictable therefore they produce
undesirable keys.

We take 512 x 512 size 8 bits Lena's image as an
example, where a = 3.99, X(o) = 0.11, the number of the
initial iteration of the logistic map is set to 300.

06/23/21

20

06/23/21

{a)

om e o s

21

Image observation

The original diagram is
shown in Fig. 8. The encrypted image of Lena and its

histogram are shown in Fig. 9.From Fig. 9 .The gray-scale
distribution is of good quality and balance.

property, which is secure against known plain text
attack.

06/23/21

22

Experiment

This experiment is conducted with Authentic AMD Dual-Core
CPU at 2.712 Ghz, 2 GB RAM and MS-windows OS.
Fig. 10 the horizontal axis shows the number of

blocks, and the vertical tile shows the computational time for the different
memory lengths: 200k and 1000k

bytes. In a multi core processor 2 threads correspond to 2 cores . The
results show that

in large memory tasks if the number of threads could be divisible on even
blocks the performance improvement is efficient.

06/23/21 23

Diagram proof

| T g ol e T B |

06/23/21

== | -
5 = AT K
% AR
Ee—H |- /TN
: T G g / _ \/ _ \\ |
ek =
(€} (d)

24

Time difference

The time varies tremendously when the number of

blocks is close to the number of real cores. However,

in contrast the time varies slightly when the number of

blocks is considerable. If , the difference of

the time approximates to 0.002s when the number of

blocks for 200k bytes in the length of the file is equal

to 2 and 3, respectively (see Fig. 10(a)). The time gap enlarges
of the time approximates to 0.0 15s when the number

of blocks for 1000k bytes in the length of the file is

equal to 2 and 3, respectively (see Fig. 10(c)).

06/23/21

25

Conclusion

This part of the research proved that parallelization methods greatly
improve the efficiency of the encryption algorithms used in image
gray-scale encryption.

06/23/21

26

Conclusion

This part of the research proved that parallelization methods greatly
improve the efficiency of the encryption algorithms used in image
gray-scale encryption.

06/23/21

27

Parallel KJ Encryption algorithm

The KJ encryption algorithm is a block encryption
algorithm developed by Kocarev and Jakimoski and
published in 2001 based on logistic map that operates
on 64-bit data blocks with a 128-bit encryption.

An input plaintext block is partitioned into eight sub-blocks, each one
consists of 8 bits. The cipher consists of r

rounds of identical transformations applied in a sequence to

the plaintext block. Encryption transformation is given with:

06/23/21

28

06/23/21

XI 2=xx=1,1f0,

Wid=x—12F1. 1) ...

X1, 0=xx-1716,
Xi I=xx-10F7,
where: i=1,....r.

29

The functions f1,...,f7 have the following form:
2:f
=f [10810

zi-1,j]
where: j=1,....,7and f: M - M, M = {0,255}, is a map derived
from a chaotic map.f0=2zi,0and zi,0,..., z i,7 are the eight

bytes of the sub-key z | which controls the i-th round. The
output block becomes input in the next round, except with the last
round.

06/23/21 30

The length of the cipher block is 64 bits. Each
round i is controlled by one 8-byte subkey z i. There are r
subkeys derived from the key in a procedure for generating
round subkeys. f is obtained via discretization of logistic
map.

06/23/21 31

Explanation

The parallelization process of the KJ encryption
algorithm consists of the following stages:
-Carrying out the data dependence analysis of a
sequential source code in order to detect
parallelized loops,

-Selecting parallelization methods based on source

code transformations,

06/23/21

32

- onstructing parallel forms of for loops in
accordance with the OpenMP standard.
There are the following basic types of the data
dependences that occur in "for" loops [16], [17]:

AN a Data flow dependancy writebefore read is required for parallel
computing

= a Data Anti-dependence and readbefore write dependancy should
not be violated in parallezational

computing
A1 an Output Dependence indicates a write-before

write ordering.

06/23/21 33

for(I=0;1<

Source Code
PARALLELITY;l++) {

copy(tmplain, src[8*]1+8]);
for (i=1;i<=rounds;i++) {

generatekey(newkey,key,i,sbox,rounds);

dst[8*]+2
dst[8*]+3
Atmpplain
dst[8*1+4

=tmpplain[1] newkey[0];
=tmpplain[2]/sbox[newkey[1]

11];

=tmpplain| 3])"sbox|newkey[2]

Atmpplain[1]Atmpplain[2]];

06/23/21

34

Source Code

dst[8*1+5]=tmpplain[4]"sbox[newkey| 3]
Atmpplain[1]Atmpplain[2] tmpplain[3]];
dst[8*1+6]=tmpplain[5]"sbox[newkey[4]
Atmpplain[1]Atmpplain][2]Atmpplain[3]
Mtmpplain[4]];
dst[8*1+7]=tmpplain[6]"sbox[newkey[5]
AMmpplain| 1]Mmpplain] 2 |tmpplain][3]
Mmpplain| 4~ tmpplain[5]];

06/23/21

35

Source Code Continuation

st[8*[]=tmpplain[7]"sbox[newkey[6]
Atmpplain] 1 }AMtmpplain] 2 [Atmpplain| 3]
Mmpplain{4]Atmpplain[5]Mtmpplain[6]];
dst|8*1+1]=tmpplain[0]*sbox[newkey|[7]
AMtmpplain[1]4tmpplain[2]“tmpplain[3]
AMtmpplain[4]Atmpplain[5] tmpplain[6]

Mmpplain[7]];
06/23/21

36

Source Code Continuation

AMtmpplain[7]];

copy(tmplain, dst[8*1+8]);

j

}.

for(1=0;1< PARALLELITY;l++) {
copy(tmpcipher,src[8*1+8]);

for (i=rounds;i==1;i--) {

generatekey(newkey,key,i,sbox,rounds);

06/23/21

37

Source Code Continuation

dst[8*1+1]=tmpcipher[2]"newkey[0];
dst[8*]+2]=tmpcipher| 3]"sbox[newkey[1]
Adst[1]];

dst[8*1+3 |=tmpcipher[4]"sbox[newkey[2]
Adst[1] Adst[2]];
dst[8*]+4=tmpcipher[5]*sbox[newkey[3]

Adst[1] Adst[2]dst[3]];

06/23/21

38

Source Code Continuation
dst[8*1+5]=tmpcipher[6]/sbox[newkey[4]
Adst[1] Adst[2] dst[3] dst[4]];
dst[8*1+6]=tmpcipher[7]Asbox[newkey[5]

Adst[1] Adst[2] dst[3] dst[4] dst[5]];

06/23/21

39

dst[8*+7]=tmpcipher[0]*sbox[newkey]6]
Adst[1] dst[2] dst[3] dst[4] dst[5] dst[6]];
dst[8*]=tmpcipher[1]*sbox[newkey[7] dst[1]
Adst[2] dst[3] dst[4] dst[5] dst[6] dst[7]];
copy(tmpcipher,dst[8*+8]):}

}.

06/23/21

40

Code explanation

This analysis is valid for the two loops.

The actual parallelization process of the first loop

consists of the three following stages:

AFiling the body of he loop with generatekey()(otherwise, we cannot
apply a data dependence analysis)

ATRequired variable privatizarion (1, i, ii, k, newkey,

sbox, tmpplain) using OpenMP (based on the

results of data dependence analysis);

06/23/21

41

-f1 Adding OpenMP library directive and clauses
(#pragma omp parallel for private() shared()).

The steps above result in the following parallel form of
loop in accordance with the OpenMP standard:
#pragma omp parallel for private(l, i, ii,

k, newkey, sbox, tmpplain)

for(I=0;l< PARALLELITY;l++) {

3

The second loop was parallelized in the same way as

the first one.

06/23/21

42

06/23/21

Experimental Results:

In order to study the efficiency of the presented KJ
parallel code we used a computer with two Quad-Core
Intel® Xeon Processors 5300 Series - 1,60 GHz and the
Intel® C++ Compiler ver. 12.1 (that supports the OpenMP
3.1). The results received for a 20 megabytes input file
using two, four and eight cores versus the only one are
shown in Table 1.

43

Table1. Speed-ups of the parallel KJ encryption algorithm in

ECB mode of operation

Table 1

Number of | Number of Speed-up

processors | threads | Encryption | Decryption Total
2 2 1.92 1.99 1.45
4 4 3.50 3.70 1.90
8 8 6.00 6.40 2.30

06/23/21

44

06/23/21

The total running time of the KJ algorithm consists of the
following operations:
Reading from input file,
generation of subkeys,
encryption of data,
decryption of data,
writing the encrypted and decrypted data in output file
Thus the total speed-up of the KJ parallel algorithm
depends heavily on the four factors:
the degree of parallelization of the loop included in
the kj_enc() and kj_dec function,

and the method of reading data from an input file,
the method of writing data to an output file.

45

The experiments have shown that the

application of the parallel KJ encryption algorithm for
multiprocessor and multi-core computers would
considerably boost the time of the data encryption and
decryption. We believe that the improvements received for
these operations are satisfactory. Moreover, the parallel KJ
encryption algorithm can be also helpful for hardware
implementations such as GPU implementations.

06/23/21

46

Conclusions

The results conclude that the loops included int the

kj_enc() and the kj_dec() functions can sped up be using parallezation

By using block method by writing in an input and output file .The following C
language functions and block sizes were applied:

fread() function and 8192-bytes block for data

reading,

06/23/21

47

fwrite() function and 128-bytes block for data

writing.

Using the fwrite() function is especially important;
choosing, for example, the fprintf() function we got much
longer time of executing our tasks.

06/23/21

48

sources:

Dariusz Burak,Parallelization of the Block Encryption Algorithm Based on

Logistic Map,PRZEGLAD ELEKTROTECHNICZNY (Electrical Review), ISSN
0033-2097, R. 88 NR 10b/2012

Liu, J., Hongli Zhang, Song, D., Guanglu Sun, Wenchong Bi, & Buza, M. K.
(2013). A parallel encryption algorithm of the logistic map for multicore with
OpenMP. Ifost. doi:10.1109/ifost.2013.6616857

06/23/21 49

