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Motivation 2-1

Motivation

[ To evaluate volatility forecasts, one needs a good
approximation for the true volatility

[J High frequency data and realized volatility (RV) possibly a
good solution

[ Under specific assumptions RV a consistent measure of the
true volatility
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Motivation 2-2

Realized volatility

Realized volatility (RV) relies on the sum of squared intraday
returns

with
A=1d/M

re—jn=p(t—j -A)=p(t—(+1)-A)
Researchers showed that if M — oo, then

RV, & v,
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Realized volatility - stylized facts

[1 ACF is dying out at a hyperbolic rate rather than
exponentially, i.e. existence of long memory

[ The logarithm of RV is nearly Gaussian

[ Its distribution in levels is right-skewed and leptokurtic
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Motivation 2-4

Questions

How to predict the realized volatility correctly?
Linear or nonlinear models?
How do the models perform with less training data?

Could we use them in high and low volatility times?

OO oo

Do we find any statistically significant differences in the
predicted time series?

L

Financial applications of the forecasts?
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Methodology 3-1

A linear model

Heterogeneous autoregressive model of realized volatility (HAR-RV)

79, = c+ BORVD 4 BWRV™ 4 gm Ry L (@

with RVt(d), RVt(W) and RVt(m) being respectively the daily, weekly
and monthly realized volatilities for period t
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Methodology 3-2

A popular hybrid nonlinear model

[J FNNHAR - A hybrid between a feedforward neural network
(FNN) and HARRV, i.e. RV!?, RV") and RVL™ as inputs
in FNN
Arneric, Josip, Tea Poklepovic, and Juin Wen Teai. "Neural
network approach in forecasting realized variance using

high-frequency data." Business Systems Research Journal 9.2
(2018): 18-34.
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Methodology proposal

[ A step further in the research of Arneric, Josip, Tea
Poklepovic, and Juin Wen Teai
(] Machine Learning approach with Recurrent Neuronal Netowks

[] Usage of SRN, LSTM and GRU with the same three input
variables - RVt(d), RVt(W) and RVt(m)
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Data 4-1

DAX30

Prices of dax

14000

13000 4

12000 4

11000 4

Price

10000 4

9000 1

Figure 1: Price evolution the German DAX30
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Data

SP500
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Figure 2: Price evolution of SP500
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Forecasting accuracy

High volatility times
Jan - Mar 2020
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Forecasting accuracy 5-2

Accuracy - long case

Asset ‘Lossfunction‘ HAR FNNHAR SRN LSTM GRU

dax30 RMSE 2,51 3.91 6.29 4.21 6.23

sp500 RMSE 1.74 3.01 2.06 2.72 4.45

Table 1: Prediction errors for the high volatility times (long)
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Forecasting accuracy 5-3

Accuracy - short case

Asset | Loss function | HAR  FNNHAR SRN LSTM GRU

dax30 RMSE 2,51 4.21 6.32 499  4.66

sp500 RMSE 3.61 2.72 6.28 496 441

Table 2: Prediction errors for the high volatility times (short)
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Forecasting accuracy

Low volatility times
May - Aug 2020
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Forecasting accuracy 5-5

Accuracy - long case

Asset | Loss function | HAR  FNNHAR SRN LSTM GRU

dax30 RMSE 3.61 3.51 3.55 3.54 351

sp500 RMSE 3.41 5.51 3.28  3.26 3.27

Table 3: Prediction errors for the low volatility times (long)
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Forecasting accuracy 5-6

Accuracy - short case

Asset | Loss function | HAR  FNNHAR SRN LSTM GRU

dax30 RMSE 12.16 8.07 534 545 5.95

sp500 RMSE 15.23 2,51 266 231 2.32

Table 4: Prediction errors for the low volatility times (short)
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VaR backtesting

Backtesting strategies for calculating VaR
at Alpha = 0.05

The listed below strategies were applied.
[] Kupiec's Conditional Coverage Test
[] Kupiec's Unconditional Coverage Test
[ Christoffersen’s Exceedence Independence Test
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Conclusion 7-1

Accuracy of predictions

High volatility times

(] Long case: RNNs have smaller errors than the competing
FNN-HAR, valid only for SP500

[ Short case: the competing model give better predictions than
the RNNs, HAR is the best model

Low volatility times
[ Long case: The prosed RNNs have smaller errors
[J Short case: The prosed RNNs outperform

Lo
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Further research

Financial application

[J Are the predictions good enough for forecasting VaR and ES
Enhance the predictions with deep neuronal networks

(1 Adding more neurons and layers

Use another linear models as benchmarks, so jumps in the data
would be incorporated as well

1 ARFIMA
] HAR-RV-J
Think of another input variables

0
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