Applying Machine Learning to predict the realized volatility of various financial assets

lvan Mitkov IMitkov@feba.uni-sofia.bg

Faculty of Economics and Business Administration Sofia University "Sv. Kliment Ohridski" www.uni-sofia.bg/feba

Outline

- 1. Motivation
- 2. Methodology
- 3. Data
- 4. Forecasting accuracy
- 5. VaR backtesting
- 6. Conclusion
- 7. Bibliography

Motivation

- To evaluate volatility forecasts, one needs a good approximation for the true volatility
- High frequency data and realized volatility (RV) possibly a good solution
- Under specific assumptions RV a consistent measure of the true volatility

Realized volatility

Realized volatility (RV) relies on the sum of squared intraday returns

$$RV_t^{(d)} = \sqrt{\sum_{j=0}^{M-1} r_{t-j\cdot\Delta}^2}$$

with

$$\Delta = 1d/M$$

 $r_{t-j\cdot\Delta} = p(t-j\cdot\Delta) - p(t-(j+1)\cdot\Delta)$

Researchers showed that if $M \to \infty$, then

$$RV_t \stackrel{p}{\rightarrow} IV_t$$

Realized volatility of various financial assets -

Realized volatility - stylized facts

- ACF is dying out at a hyperbolic rate rather than exponentially, i.e. existence of long memory
- The logarithm of RV is nearly Gaussian
- ⊡ Its distribution in levels is right-skewed and leptokurtic

Questions

- ⊡ How to predict the realized volatility correctly?
- □ Linear or nonlinear models?
- ⊡ How do the models perform with less training data?
- □ Could we use them in high and low volatility times?
- Do we find any statistically significant differences in the predicted time series?
- ☑ Financial applications of the forecasts?

A linear model

Heterogeneous autoregressive model of realized volatility (HAR-RV)

$$\tilde{\sigma}_{t+1d}^{(d)} = c + \beta^{(d)} R V_t^{(d)} + \beta^{(w)} R V_t^{(w)} + \beta^{(m)} R V_t^{(m)} + \tilde{\omega}_{t+1d}^{(d)}$$

with $RV_t^{(d)}$, $RV_t^{(w)}$ and $RV_t^{(m)}$ being respectively the daily, weekly and monthly realized volatilities for period t

A popular hybrid nonlinear model

• FNNHAR - A hybrid between a feedforward neural network (FNN) and HAR-RV, i.e. $RV_t^{(d)}$, $RV_t^{(w)}$ and $RV_t^{(m)}$ as inputs in FNN

Arneric, Josip, Tea Poklepovic, and Juin Wen Teai. "Neural network approach in forecasting realized variance using high-frequency data." Business Systems Research Journal 9.2 (2018): 18-34.

Methodology proposal

- A step further in the research of Arneric, Josip, Tea Poklepovic, and Juin Wen Teai
- Machine Learning approach with Recurrent Neuronal Netowks
- □ Usage of SRN, LSTM and GRU with the same three input variables $RV_t^{(d)}$, $RV_t^{(w)}$ and $RV_t^{(m)}$

Data

DAX30

Figure 1: Price evolution the German DAX30

Data

SP500

Figure 2: Price evolution of SP500

High volatility times Jan - Mar 2020

Realized volatility of various financial assets -

Accuracy - long case

Asset	Loss function	HAR	FNNHAR	SRN	LSTM	GRU
dax30	RMSE	2.51	3.91	6.29	4.21	6.23
sp500	RMSE	1.74	3.01	2.06	2.72	4.45

Table 1: Prediction errors for the high volatility times (long)

Accuracy - short case

Asset	Loss function	HAR	FNNHAR	SRN	LSTM	GRU
dax30	RMSE	2.51	4.21	6.32	4.99	4.66
sp500	RMSE	3.61	2.72	6.28	4.96	4.41

Table 2: Prediction errors for the high volatility times (short)

Low volatility times May - Aug 2020

Realized volatility of various financial assets

Accuracy - long case

Asset	Loss function	HAR	FNNHAR	SRN	LSTM	GRU
dax30	RMSE	3.61	3.51	3.55	3.54	3.51
sp500	RMSE	3.41	5.51	3.28	3.26	3.27

Table 3: Prediction errors for the low volatility times (long)

Accuracy - short case

Asset	Loss function	HAR	FNNHAR	SRN	LSTM	GRU
dax30	RMSE	12.16	8.07	5.34	5.45	5.95
sp500	RMSE	15.23	2.51	2.66	2.31	2.32

Table 4: Prediction errors for the low volatility times (short)

Backtesting strategies for calculating VaR at Alpha = 0.05

The listed below strategies were applied.

- Kupiec's Conditional Coverage Test
- ☑ Kupiec's Unconditional Coverage Test
- ⊡ Christoffersen's Exceedence Independence Test

Accuracy of predictions

High volatility times

- ☑ Long case: RNNs have smaller errors than the competing FNN-HAR, valid only for SP500
- Short case: the competing model give better predictions than the RNNs, HAR is the best model

Low volatility times

- □ Long case: The prosed RNNs have smaller errors
- ☑ Short case: The prosed RNNs outperform

Further research

Financial application

• Are the predictions good enough for forecasting VaR and ES Enhance the predictions with deep neuronal networks

☑ Adding more neurons and layers

Use another linear models as benchmarks, so jumps in the data would be incorporated as well

- ARFIMA
- ⊡ HAR-RV-J

Think of another input variables

Bibliography

Andersen, Torben G and Bollerslev, Tim and Diebold, Francis X and Labys, Paul The distribution of realized exchange rate volatility available on https://www.tandfonline.com

Arnerić, Josip and Poklepović, Tea and Teai, Juin Wen Neural Network Approach in Forecasting Realized Variance Using High-Frequency Data available on https://content.sciendo.com

Corsi, Fulvio

A simple approximate long-memory model of realized volatility available on http://statmath.wu.ac.at

Realized volatility of various financial assets

Bibliography

Kruse, Robinson

Can realized volatility improve the accuracy of Value-at-Risk forecasts

available on https://www.researchgate.net

Louzis, Dimitrios P and Xanthopoulos-Sisinis, Spyros and Refenes, Apostolos P Realized volatility models and alternative Value-at-Risk prediction strategies available on https://www.sciencedirect.com

Realized volatility of various financial assets

Bibliography

📎 Tsay, Ruey S

Analysis of financial time series

Zhang, Guogiang and Patuwo, B Eddy and Hu, Michael Y Forecasting with artificial neural networks:: The state of the art

available on www.citeseerx.ist.psu.edu

Zheng, Fengxia and Zhong, Shouming Time series forecasting using a hybrid RBF neural network and AR model based on binomial smoothing available on www.citeseerx.ist.psu.edu

Realized volatility of various financial assets

