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1. Introduction

Our motivation is based on the risk process,

X(t) = c t−
N(t)∑
i=1

Zi. (1)

We assume that the individual claim amount has a continuous distri-

bution with distribution function F , F (0) = 0, and mean value µ =

EZ1 < ∞. In the classical risk model the process N(t) is assumed to be

a homogeneous Poisson process.

Let us consider the following stochastic processN(t) = X1+. . .+XN1(t),

where X1, X2, . . . are mutually independent random variables and also

independent of the process N1(t).



It is well known that if the compounding random variable X has a dis-

crete distribution, truncated at 0 and from the right away from k+ 1, the

random variable N(t) has a distribution of order k, see for example

Aki S., Kuboku H. and Hirano K. (1984). On discrete distributions of

order k, Ann. Inst. Statist. Math. 36, Part A, 431–440.

and

Balakrishnan N. and Koutras M.V. (2002). Runs and Scans with

Applications, Wiley Series in Probability and Statistics.



Pólya-Aeppli distribution of order k was introduced by

Minkova L.D. (2010). Pólya-Aeppli Distribution of Order k, Commun.

Statist.-Theory and Methods, 39, 408–415,

and applied as a counting distribution in the risk model considered in

Chukova S. and Minkova L.D. (2015). Pólya-Aeppli of order k Risk

Model, Commun. Statist.-Simulation and Computation, 44, 551–564.



There, the random variable N1(t) is Poisson distributed with parameter

λ and Xi are truncated geometrically distributed with probability mass

function (PMF) and probability generating function (PGF) given by

P (X = i) =
1− ρ
1− ρk

ρi−1, i = 1, 2, . . . k (2)

and

ψX(s) =
(1− ρ)s

1− ρk
1− ρksk

1− ρs
,

where k ≥ 1 is fixed integer number. As a result, the above process N(t)

is called Pólya-Aeppli process of order k, denoted by PAk(λ, ρ).



In this talk we introduce another Pólya-Aeppli process of order k and

call it Pólya-Aeppli process of order k of second kind, and denote it by

PAkII(λ, ρ). The difference is in the construction of the compounding

distribution. In the truncated geometric distribution in (2) the mass from

k + 1 to infinity is uniformly distributed over the points 1, 2, . . . , k. Here,

we consider the case when the mass from k + 1 to infinity is clumped at

point k.



2. Pólya-Aeppli process of order k of second kind

The distribution of the compounding random variables Xi is given by

the following PMF, which clumps the right tail of the distribution at point

k:

P (X = i) =


(1− ρ)ρi−1, i = 1, 2, . . . k − 1

ρi−1, i = k.

(3)

The PGF is given by

ψX(s) =
(1− ρ)s + (1− s)(ρs)k

1− ρs
. (4)

Definition 1 The distribution defined by (3) and (4) is called a clumped

geometric distribution with parameters k and 1− ρ, and it is denoted

by CGe(k, 1− ρ).

In this case, the PGF of the N(t) is given by

ΨN(t)(s) = e
−λt

(
1− (1−ρ)s+(1−s)(ρs)k

1−ρs

)
. (5)



Definition 2 The process defined by the PGF in (5) is called a Pólya-

Aeppli process of order k of second kind with parameters λ > 0 and

ρ ∈ [0, 1). We denote this process by PAkII(λ, ρ).

If k → ∞, the clumped geometric distribution approaches the usual

geometric distribution with parameter 1− ρ.

Remark 1 If k →∞, the Pólya-Aeppli process of order k of second

kind, approaches the usual Pólya-Aeppli process, see [5] and [2]. If

ρ = 0, it is the usual homogeneous Poisson process.



Remark 2 The mean and the variance functions of the PAkII(λ, ρ)

are given by

EN(t) = λ t
1− ρk

1− ρ
and

V ar(N(t)) =
λt

(1− ρ)2
[1 + ρ− (2k + 1)ρk + (2k − 1)ρk+1].

For the Fisher index, we obtain

FI(N(t)) =
V ar(N(t))

E(N(t))
=

1 + ρ

1− ρ
− 2k

ρk

1− ρk
.

The Fisher index of the distribution of the Pólya-Aeppli process is

equal to 1+ρ
1−ρ, see [2]. Hence, the distribution of the counting process

PAkII(λ, ρ) is underdispersed with respect to the distribution of the

Pólya-Aeppli process.



Let us denote by Pn(t) = P (N(t) = n), n = 0, 1, . . . The following

proposition gives an extension of the Panjer recursion formulas, see [6].

Proposition 1 The PMF of the N(t) ∼ PAkII(λ, ρ) satisfies the fol-

lowing recursion formulae:

P1(t) = λt(1− ρ)P0(t),

Pn(t) = (2ρ + λt(1−ρ)−2ρ
n )Pn−1(t)− (1− 2

n)ρ2Pn−2(t), n = 2, 3, . . . k − 1

Pn(t) = (2ρ + λt(1−ρ)−2ρ
n )Pn−1(t)− (1− 2

n)ρ2Pn−2(t) + λtρk knPn−k(t)

−λtρk[k+1
n + k−1

n ρ]Pn−k−1(t) + λtρk+1 k
nPn−k−2(t), n = k, k + 1, k + 2, . . .

and P−1(t) = P−2(t) = 0.



3. Pólya-Aeppli process of order k of second kind as a

birth process

Suppose that N(t) ∼ PAkII(λ, ρ). The properties of this process are

specified by the following assumptions: For any small h > 0

P (N(t+h) = n | N(t) = m) =



1− λh + o(h), n = m,

(1− ρ)ρi−1λh + o(h), n = m + i,

i = 1, 2, . . . , k − 1,

ρk−1λh + o(h), n = m + k,

(6)

for every m = 0, 1, . . . , where o(h) → 0 as h → 0. Note that the

assumptions imply that for i = k + 1, k + 2, . . . , P (N(t + h) = m + i |
N(t) = m) = o(h).



The above assumptions yield the following Kolmogorov forward equa-

tions:

P ′0(t) = −λP0(t),

P ′n(t) = −λPn(t) + (1− ρ)λ
∑n

j=1 ρ
j−1Pn−j(t), n = 1, 2, . . . , k − 1,

P ′n(t) = −λPn(t) + (1− ρ)λ
∑k−1

j=1 ρ
j−1Pn−j(t) + λρk−1Pn−k(t), n = k, k + 1, . . . ,

(7)

with the conditions

P0(0) = 1 and Pn(0) = 0, n = 1, 2, . . . . (8)

Multiplying the nth equation of (7) by sn and summing for all n =

0, 1, 2, . . . we get the following differential equation

∂ΨN(t)(s)

∂t
= −λ[1− ψX(s)]ΨN(t)(s). (9)



The solution of (9) with the initial condition

ΨN(1)(s) = 1

is given by (5), which is the PGF of the distribution of PAkII(λ, ρ). This

leads to the following, equivalent to Definition 2, definition for the Pólya-

Aeppli process of order k of second kind, namely:

Definition 3 The process defined by (7) and (8) is the Pólya-Aeppli

process of order k of second kind.



4. Application to risk model

We consider the risk model (1), where N(t) ∼ PAkII(λ, ρ). We call

this model a Pólya-Aeppli of order k of second kind risk model. In this

case the relative safety loading θ is defined by

θ =
EX(t)

E
∑N(t)

i=1 Zi
=

c(1− ρ)

λµ(1− ρk)
− 1.

To ensure that θ > 0, the premium income per unit time c should satisfy

the following inequality

c >
λµ(1− ρk)

1− ρ
.

Denote by τ = inf{t : X(t) < −u} the time to ruin of an insurance

company having initial capital u ≥ 0, and by

Ψ(u) = P (τ <∞) (10)

the related ruin probability.



Let G(u, y) be the probability of the following event:

{ruin occurs with initial capital u and deficit, immediately after ruin occurs, is at most y}
with u ≥ 0 and y ≥ 0. Hence

G(u, y) = P (τ <∞, D ≤ y), (11)

where D = |u+X(τ )| is the deficit immediately after ruin occurs. There-

fore

lim
y−→∞

G(u, y) = Ψ(u). (12)

Let us denote by

H(x) = (1− ρ)

k−1∑
i=1

ρi−1F ∗i(x) + ρk−1F ∗k(x) (13)

the non defective probability distribution function of the claims with

H(0) = 0, H(∞) = 1.



Then, using the assumptions in (6), we obtain the following differential

equation

∂G(u, y)

∂u
=
λ

c

[
G(u, y)−

∫ u

0

G(u− x, y)dH(x)− [H(u + y)−H(u)]

]
.

(14)



4.1. Ruin probability

Theorem 1 The probability of ruin Ψ(u) satisfies the equation

dΨ(u)

du
=
λ

c

[
Ψ(u)−

∫ u

0

Ψ(u− x)dH(x)− [1−H(u)]

]
, u ≥ 0. (15)

Integrating in (15), we obtain the function G(0, y) given by

G(0, y) =
λ

c

∫ y

0

[1−H(u)]du, (16)

and for the ruin probability with no initial capital we obtain

Ψ(0) =
λµ

(1− ρ)c
(1− ρk). (17)



4.2. Exponentially distributed claims

Let us consider the case of exponentially distributed claim sizes with

mean µ, i.e. F (x) = 1− e−
x
µ , x ≥ 0, µ > 0. In this case, the function

F ∗i(x) = 1−
i−1∑
j=0

(
x
µ

)j
j!

e−
x
µ , x ≥ 0

is an Erlang distribution function. Then, the distribution function H(x)

in (13) is given by

H(x) = 1−
k−1∑
i=0

(
ρx
µ

)i
i!

e−
x
µ .

The density function h(x) has the form

h(x) =
1

µ

(1− ρ)

k−2∑
i=0

(
ρx
µ

)i
i!

+

(
ρx
µ

)k−1
(k − 1)!

 e−xµ .



So, the initial condition (16) in the case of exponential distribution is

G(0, y) =
λµ

c

k−1∑
i=0

ρi

i!
γ(i + 1, y/µ),

where γ(α, x) =
∫ x
0 t

α−1e−tdt is the incomplete Gamma function.



5. Simulation

In what follows, we apply the simulation approach for calculating the

probability of ruin suggested in [3] for the case of exponentially distributed

claims with initial capital u = 0. We confirm the validity of our simulation

results by matching them with the value of the ruin probability computed

analytically using (17). Then, using our simulator, we provide results for

the case of non-zero initial capital not only for exponentially distributed

claims but also for claims with gamma and Weibull distributions.

Next, we provide some results regarding the probability of ruin for dif-

ferent scenarious of the claim distribution as well as the value of the initial

capital.



5.1. Results

We consider the case of exponentially distributed claims and no initial

capital u = 0. We verify the correctness of our simulator by comparing the

results for the probability of ruin for fixed model parameters, produced in

two different ways : (i) by the simulator, given in column “simulated“, and

(ii) computed using (17) given in column “analytical“. These are given in

Table 1.

λ k ρ simulated Exp(1) analytical Exp(1)

1.0 15 0.6 0.208117 0.208235

1.5 4 0.8 0.316531 0.316286

2.0 10 0.4 0.256365 0.256383

2.5 3 0.9 0.423526 0.423437

3.0 6 0.2 0.288426 0.288443

Table 1: Simulated and analytical Exp(1)



As it is easy to see, the “analytical“ and “simulated“ results are very

close. So, we use our simulator, written in MATHEMATICA, to compute

a reasonable approximation of the probability of ruin for non-exponentially

distributed claims and non-zero initial capital (u 6= 0) and a summary of

our results is given in subsection .



5.1.1. Case 1: Exponentially distributed claims

Here, we present some simulation results for the case of exponentially

distributed claims with non-zero initial capital.

Comparing part(b) and part(d) of Figure 1, it is easy to see that the

probability of ruin is shifted downwards as the initial capital increases. If

the initial capital is u = 0, the smallest values for the probability of ruin is

just above 0.35 for ρ = 0.1, whereas the analogous value for u = 5 is just

below 0.1. The depicted overall dependence on ρ, regardless of the value

of the initial capital, is as expected, the probability of ruin increases as ρ

increases. The overall trends depicted in part(a) and part(c) of Figure 1

also agree with our intuition. Namely, for a fixed value of ρ, the probability

of ruin is higher for low values of the initial capital and it increases on k.

It is worth to point out the sharp increase of the probability of ruin for

large values of ρ and large k, as shown in part(a) of Figure 1.
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Figure 1: Probability of ruin: exponentially distributed claims



5.1.2. Case 2: Gamma distributed claims

Next, we consider gamma distributed claims with parameters α and β,

i.e., the density function of the claim sizes is

f (x) =
xα−1

βαΓ(α)
e−

x
β , x ≥ 0,

where Γ(α) is the Gamma function. Suppose that α = 2 and β = 0.5. In

this case the mean values of the claims are EZi = αβ = 1. We present

results for different values of the model parameters u, k and ρ.

The trends observed for the gamma distributed claims are similar to

the one we have presented and discussed for the case of exponentially

distributed claims in subsection . Here, in Figure 2, we depict the depen-

dence of the probability of ruin from u, for similar ρ and k. Overall the

probability of ruin for lower value of the capital u is higher, similar to

what we have observed in the exponential case. In addition we see that

for high values of u, and ρ, k have a strong impact on the probability of

ruin, e.g., see for ρ = 0.9, and u = 0 the range of the probability of ruin

is approximately (0.35, 0.65), whereas for u = 5 this range is much larger,
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Figure 2: Probability of ruin: gamma distributed claims

approximately (0.05, 0.53).



5.1.3. Case 3: Weibull distributed claims

Next, we consider the Weibull distribution with parameters α = 1.43552259

and β = 1.1013206 distributed claims. Here α is the shape parameter and

β is the scale parameter. The parameters of the Weibull and gamma distri-

butions were selected so that the three claim size distributions considered

in sections , and have the same expectation µ = 1 and the Weibull and

gamma claim sizes have the same variances.
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Figure 3: Probability of ruin: Weibull distributed claims



We were quite surprised to see that the behavior of the probability

of ruin under Weibull distributed claims, part(a) and part(b) in Figure 3,

mimics quite closely the behavior of this probability for gamma distributed

claims. So, then the natural question is: under a risk model based on the

Pólya-Aeppli process of order k, are the mean value and the variance of

the claim distribution what determines the probability of ruin, i.e., the

actual form of the claim size distribution does not have an effect on the

probability of ruin. Interestingly, similar observations were made in [?].

Again, observing these results is a good motivation for future research

because at this point we are not able to answer this question.



5.2. Comparison between M1 and M2

For brevity we will refer to the current model as M2 and to PAk(λ, ρ)

as M1. Here we provide a brief comparison between the probabilities of

ruin for the two models.
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Figure 4: Probability of ruin: comparison between M1 and M2

In part(a) and part(b) in Figure 4, we fix the value of the parameter

u = 3, and illustrate the dependence of the probability of ruin for M1 and

M2 for two different values of ρ = 0.7, 0.9. Again, the probability of ruin



for M1 and M2 is similar for the selected exponential and Weibull claim size

distributions. The probability of ruin is an increasing function of k and its

value is shifted upwards for higher values of parameter ρ. As expected, the

probability of ruin for M2 is higher than for M1 and this is exactly what

we expect to observe as an outcome for the insurance company at the time

of severe natural disaster. Having model PAkII(λ, ρ) in place provides a

reasonable theoretical background for the company to plan accordingly

for natural calamities. From the observations above a natural question

arises: are there any condition on the mean and the variance of the claim

size distribution that will guaranty the satisfaction of some inequalities on

the related ruin probabilities. These inequalities will be very useful in the

sense that, even at the time of calamity, the probability of ruin would not

exceed a known value. Again, further numerical and theoretical studies

are needed to gain some insight on this question.
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